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Abstract 
   

     The bin packing problem (BPP) is an NP-hard 

problem of combinatorial optimization. Given a set of 

numbers and a set of bins of fixed capacity, the 

problem is to find the minimum number of bins needed 

to contain all of the numbers (Korf, 2002). 

     In this paper, a genetic algorithm is proposed, 

which generates random permutations of the input set 

and then itself uses the first-fit algorithm, an 

approximate algorithm to the BPP, to generate valid 

solutions. The goal of the genetic algorithm is to 

produce optimal permutations of the input set on 

which the first-fit algorithm will be applied.  

     The comparative results of the two algorithms on 

three groups of test problem instances are compared 

and evaluated, and the genetic algorithm is found to 

produce better solutions than those of the first-fit 

algorithm alone for two-thirds of the problem 

instances. For the other problem instances, the two 

algorithms produced solutions with equivalent 

fitnesses. 

 

1. Introduction 
 

     The first-fit approximate algorithm has been 

implemented as an alternative to computationally 

difficult exact algorithms to produce adequate 

solutions to the bin packing problem (BPP).  

     In this paper, a genetic algorithm is proposed, 

which generates random permutations of the input set 

and then itself uses the first-fit algorithm to generate 

valid solutions to the BPP. What matters here is the 

order of the elements in the input set. Therefore, the 

goal of the genetic algorithm is to produce optimal 

permutations of the input set on which the first-fit 

algorithm will be applied.  

     The comparative results of the two algorithms on 

three groups of test problem instances are compared 

and evaluated at the end of the paper. 

 

2. The Problem 
 

2.1. Background 
  

     The bin packing problem (BPP) is an NP-hard 

problem of combinatorial optimization. Given a set of 

numbers and a set of bins of fixed capacity, the 

problem is to find the minimum number of bins needed 

to contain all of the numbers (Korf, 2002). 

     Formally, given 𝑛  items and 𝑛  bins, with 𝑤𝑗 =

𝑤𝑒𝑖𝑔ℎ𝑡 of item 𝑗 and 𝑐 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 of each bin, the 

problem is to minimize 𝑧 = ∑ (𝑦𝑖)𝑛
𝑖=1  subject to 

∑ (𝑤𝑗𝑥𝑖𝑗) ≤ 𝑐𝑦𝑖
𝑛
𝑗=1 : 𝑖 ∈ 𝑁 = {1, … , 𝑛} , ∑ (𝑥𝑖𝑗) =𝑛

𝑖=1

1 : 𝑗 ∈ 𝑁 , 𝑦𝑖 = 0 or 1 : 𝑖 ∈ 𝑁 , 𝑥𝑖𝑗 = 0 or 1 : 𝑖 ∈ 𝑁 

and 𝑗 ∈ 𝑁 , where 𝑦𝑖 = 1  if bin 𝑖  is used, and 0 

otherwise, and 𝑥𝑖𝑗 = 1 if item 𝑗 is assigned to bin 𝑖, 

and 0 otherwise (U. of Bologna: ORG). 

     The following examples demonstrate the bin 

packing problem. Take the set of numbers 

{1, 2, 3, 4, 5} and a bin capacity of 5. A solution for 

this problem instance forms bins {2, 3} , {1, 4} , and 

{5}, for a total of three bins, each at their capacity. In 

another example, given the set {6, 12, 15, 40, 43, 82} 

and a bin capacity of 100, a minimum of two bins, 

{6, 12, 82}  and {15, 40, 43} , can be formed (Korf, 

2002). 

     In bin packing problem instances, the minimum 

number of bins in a solution must be at least ⌈
∑(𝑎𝑖∈𝐴)

𝐶
⌉, 

where 𝐴 is the input set and 𝐶 is the bin capacity. If the 

number of bins in a solution is equivalent to this 

expression, then that solution is an optimal solution to 

the problem instance (Korf, 2002). In both of the 

above examples, the solutions presented are optimal 

solutions for their respective problem instances. 

      

2.2. Applications 
 

     The bin packing problem can be applied to many 

areas, both in computing and otherwise. In general, the 

BPP is applicable to any situation in which identical 

bins with the same capacity are to be filled with items 

of a specified weight, such as packing trucks that have 

a weight capacity 𝐶 (Malkevitch, 2004). 

Specifically, bin packing is used in VLSI circuit 

clustering, partitioning, and technology mapping, 

where the area of a gate corresponds to the size of an 

item and the area of the clusters corresponds to the 

capacity of the bins (Izumi et al., 1998). 

     In addition, bin packing is directly related to 

machine scheduling problems, in which a set of 

independent tasks and a set of identical machines on 

which to run the tasks are given. Each task requires a 

certain amount of time to complete on a machine. One 

might wish to determine the minimum number of 

machines needed to complete a collection of tasks with 



 

 

times 𝑡1, 𝑡2, … , 𝑡𝑛  in time 𝑇 . This problem is, in 

essence, a bin packing problem in which 𝑇  is the 

capacity of the bins and each 𝑡𝑖 is the weight of an item 

to be packed. (Malkevitch, 2004). 

 

3. Algorithms 
      

     This section briefly describes a few exact 

algorithms for the bin packing problem, and then 

examines the first-fit approximate algorithm, which is 

the algorithm used in comparison to the proposed 

genetic algorithm. Finally, the genetic algorithm for 

which this paper was written is itself presented and 

described. 

 

3.1. Exact Algorithms 
 

     Very little can be found in the literature on the exact 

solution of the BPP (Schwerin & Wäscher, 1997; U. 

of Bologna: ORG). Eilon and Christofides (1971) 

presented a depth-first enumerative algorithm and 

Hung and Brown (1978) presented a branch-and-

bound algorithm, yet both teams indicated that their 

respective algorithms can only solve small-size 

problem instances (U. of Bologna: ORG). 

     Another exact algorithm, MTP, proposed by 

Martello and Toth (1989) is based on a “first-fit 

decreasing” branching strategy (U. of Bologna: ORG), 

and is the best existing algorithm for optimal packing 

(Korf, 2002). However, since the goal of this paper is 

to present and compare approximate heuristic 

approaches to the bin packing problem, this algorithm 

will not be discussed further. 

 

3.2. The First-Fit Approximate Algorithm 
 

     Although many approximate algorithms for the bin 

packing problem exist, only one, the first-fit (FF) 

algorithm, will be described here. This algorithm is 

later compared to the genetic algorithm presented in 

this paper. 

     The first-fit algorithm considers the items in the 

input set in the order in which they appear in the set. 

Each item is assigned to the lowest indexed initialized 

bin into which it fits. If the current item cannot fit into 

any initialized bin, a new bin is initialized, and the item 

is placed into that bin (U. of Bologna: ORG). Figure 

1 shows the first-fit algorithm applied to the set 𝐴 =
{4, 5, 6, 3, 9, 2} with a bin capacity of 13. 

 

𝐴 = {4, 5, 6, 3, 9, 2}; 𝐶 = 13 

 

 𝐵1 = {𝟒}   

 𝐵1 = {4, 𝟓}   

 𝐵1 = {4, 5}        𝐵2 = {𝟔} 

 𝐵1 = {4, 5, 𝟑}    𝐵2 = {6} 

 𝐵1 = {4, 5, 3}    𝐵2 = {6}       𝐵3 = {𝟗} 

 𝐵1 = {4, 5, 3}    𝐵2 = {6, 𝟐}   𝐵3 = {9} 

 

Figure 1. The first-fit algorithm applied to the set 

𝑨 = {𝟒, 𝟓, 𝟔, 𝟑, 𝟗, 𝟐} with a bin capacity of 𝟏𝟑. 

 

     The first-fit algorithm’s time complexity is 

𝑂(𝑁 log 𝑁), which can be achieved by using a 2–3 tree 

whose leaves store the current capacities of the 

initialized bins. Therefore, each iteration of FF 

requires 𝑂(log 𝑛) time, since the number of leaves in 

the tree is bounded by 𝑛 . (U. of Bologna: ORG). 

Furthermore, for all instances 𝐼  of the bin packing 

problem, FF(𝐼) ≤
17

10
opt(𝐼) + 2 , where opt(𝐼) 

denotes the optimal solution for instance 𝐼. Similarly, 

there exist instances 𝐼 , with arbitrarily large opt(𝐼), 

for which FF(𝐼) >
17

10
opt(𝐼) − 8 . (Johnson et al., 

1974). 

     It should be noted that along with the first-fit 

algorithm, the best-fit, next-fit-decreasing, first-fit-

decreasing, and best-fit-decreasing algorithms all 

have equivalent worst-case time complexities of 

𝑂(𝑁 log 𝑁) (Coffman et al., 1984). 

 

3.3. The Genetic Algorithm 
 

     In addition to greedy heuristics like the first-fit 

algorithm, genetic algorithms (GA) can also be used to 

produce adequate solutions to NP-hard problems. 

Genetic algorithms are heuristics based on biological 

evolution that simulate reproduction with variation 

and selection according to fitness, like that of a true 

biological population (Eiben & Smith, 2010). 

     The genetic algorithm created to solve the BPP is 

implemented in the C# programming language and 

follows the general structure of a typical genetic 

algorithm, shown in Figure 2 (Eiben & Smith, 2010). 

In this GA, the program iterates through a set number 

of generations and then halts, reporting the best overall 

solution. 

 
Generate random initial population; 
While (not done) 
{ 
     For i=1 to population size 
     { 
          Select two parents; 
          Crossover to produce an offspring; 
          Mutate the offspring; 
          Insert offspring into new generation; 
     } 
 
     Offspring replace parents; 
     Report the best solution in the population; 
} 
 
Report the best overall solution; 
 

Figure 2. The general structure of a genetic 

algorithm. 

 

Time 



 

 

3.3.1. Encoding Candidate Solutions 
 

     In a GA designed for the bin packing problem, each 

candidate solution can be represented by a permutation 

of the elements in the input set. 

     For each chromosome, the input set is randomly 

shuffled, creating a random permutation. The question 

now is how do these permutations apply to the BPP? 

Since the first-fit approximate algorithm is the 

algorithm being compared to, the first-fit algorithm 

itself will be applied to each permutation. This way, 

all candidate solutions will undoubtedly be valid. 

     In short, the two algorithms that will be compared 

are the first-fit algorithm itself and the genetic 

algorithm, which operates on solutions generated from 

the first-fit algorithm. Because the underlying 

algorithm in both applications is identical, only the 

order of the elements in the input set will differ.  

     Therefore, the goal of the genetic algorithm is to 

produce optimal permutations of the input set on 

which the first-fit algorithm will be applied. The 

permutations are generated by randomly shuffling the 

elements in the input set. An example of the 

underlying first-fit algorithm is shown in Figure 1. 

     A Chromosome class with data members 

permutation and fitness hold each candidate solution’s 

permutation and its associated fitness, respectively. 

Additionally, the first-fit algorithm is applied to each 

chromosome during its creation, as to promptly 

calculate its fitness so that it is available throughout 

the remainder of the program’s execution. A 

population array holds every Chromosome in the 

population. 

 

3.3.2. Fitness 
 

     In this genetic algorithm, a chromosome’s fitness is 

equal to the number of bins needed to hold the 

elements in the input set, as defined by the bin packing 

problem (see 2. The Problem). Therefore, fitness 

should be minimized, such that chromosomes with 

smaller fitnesses are better solutions. 

     The fitness for each chromosome is also stored 

within the Chromosome class. Fitnesses are 

calculated when each chromosome is created, after the 

underlying first-fit algorithm assigns the input 

elements to bins. The resulting number of bins is the 

chromosome’s fitness. 

     At the end of each generation, once the offspring 

chromosomes replace the parent chromosomes, the 

chromosome with the smallest fitness is reported as 

output to the program. This chromosome is also 

compared to an overall best chromosome kept 

throughout the program. If the best chromosome in the 

current population has a smaller fitness than the 

overall best, the local best chromosome becomes the 

overall best. At the end of the program’s execution, the 

overall best chromosome and its fitness are reported as 

output.  

 

3.3.3. Selection 
 

    The genetic algorithm uses k-tournament selection 

to determine which chromosomes in the population 

will become parents, with 𝑘 = 2  for the problem 

instances used during testing and during comparison 

with the first-fit algorithm. 

     To determine a parent, an array of size 𝑘  of 

candidate parents is initialized, and chromosomes are 

randomly chosen from the population and added to the 

array until it is full. The candidates’ fitnesses are then 

compared, and the chromosome with the smallest 

fitness becomes the parent. 

 

3.3.4. Crossover 

 

     Crossover in the genetic algorithm is accomplished 

via alternating-position crossover (Larrañaga et al., 

1996). In this crossover method, the first element in 

the first parent chromosome is added to the offspring 

chromosome. Then, ignoring duplicates, the first 

element in the second parent chromosome is added to 

the offspring chromosome. This continues for each 

element in each parent, with all duplicates ignored. 

This process is illustrated in Figure 3.  

 

𝑝𝑎𝑟𝑒𝑛𝑡0       = {1 7 8 2 3 4 6 5} 
𝑝𝑎𝑟𝑒𝑛𝑡1       = {2 7 1 5 6 3 4 8} 
 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = {1 2 7 7 8 1 2 5 3 6 4 3 6 4 5 8} 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = {1 2 7 8 5 3 6 4} 
 

Figure 3. An example of alternating-position 

crossover in a genetic algorithm. 

 

3.3.5. Mutation 

 

     After an offspring chromosome has been created, a 

random swap mutation is performed on that 

chromosome’s permutation encoding. To perform this 

mutation, two indices in the array holding the 

permutation are randomly selected, and the contents of 

the two indices are swapped. This way, each new 

chromosome that enters the population still maintains 

some heritability from its parents, while also allowing 

for the introduction of new traits into the population. 

 

3.3.6. Parameter Values 

 

     Parameter values for the genetic algorithm were 

chosen through trial-and-error, based on results from 

small test instances. Figure 4 lists the genetic 

algorithm’s parameters and the values of each. 

 



 

 

 Population size:              100 

 Number of generations:  100 

 K-tournament 𝑘:              2 

 Probability of crossover: 100% 

 Probability of mutation:  10% 

 

Figure 4. Chosen parameter values for  

the genetic algorithm 

 

4. Comparison of Algorithms 
 

     In this section, several BPP problem instances are 

described, and the results of both the genetic algorithm 

and the first-fit algorithm on those instances are stated 

and compared. For these tests, both of the algorithms 

have been implemented in the C# programming 

language and run as console applications. 

     The algorithms were first tested on three problem 

instances, each with an input set of 50 randomly 

generated unique integers and varying bin capacities. 

Similar groups of sets of size 100 and 500 were also 

tested. For each instance, the genetic algorithm was 

executed 50 times. 

 

4.1. Test Group 1: Input sets of size 50 
 

     As shown in Table 1 below, the genetic algorithm 

outperformed the first-fit algorithm in two of the three 

test problem instances. In both of these instances (sets 

(50_𝐵  and 50_𝐶) , the genetic algorithm achieved 

solutions whose fitnesses are one less than the 

fitnesses produced by the first-fit algorithm. In the 

other test instance (50_𝐴) , both algorithms’ best 

solutions had equivalent fitnesses. 

 

Table 1. Fitness Summary Statistics for Test 

Group 1. 

 

Input Set Algorithm Best Fitness 

50_𝐴 
(capacity: 200) 

First-Fit 20 

Genetic 20 

50_𝐵 
(capacity: 250) 

First-Fit  18 

Genetic 17 

50_𝐶 
(capacity: 350) 

First-Fit  12 

Genetic 11 

 

4.2. Test Group 2: Input sets of size 100 
 

     The algorithms produced similar results in the 

second test group. The genetic algorithm’s solutions 

for problems 100_𝐴 and 100_𝐵 were better than the 

solutions produced by the first-fit algorithm, by a 

single bin. The best solutions from the two algorithms 

for problem 100_𝐶  had identical fitnesses. Table 2 

shows these results. 

 

Table 2. Fitness Summary Statistics for Test 

Group 2. 

 
Input Set Algorithm Best Fitness 

100_𝐴 
(capacity: 500) 

First-Fit 29 

Genetic 28 

100_𝐵 
(capacity: 500) 

First-Fit  32 

Genetic 31 

100_𝐶 
(capacity: 500) 

First-Fit  34 

Genetic 34 

 

4.3. Test Group 3: Input sets of size 500 
 

          Results for test group three matched the results 

of the previous two test groups. The genetic algorithm 

produced a better-by-one solution for two of the 

problem instances (500_𝐵  and 500_𝐶) compared to 

the first-fit algorithm. The two algorithms produced an 

identical best fitness for problem instance 500_𝐴. The 

results are shown in Table 3. 

 

Table 3. Fitness Summary Statistics for Test 

Group 3. 

 
Input Set Algorithm Best Fitness 

500_𝐴 
(capacity: 1,500) 

First-Fit 136 

Genetic 136 

500_𝐵 
(capacity: 1,500) 

First-Fit  134 

Genetic 133 

500_𝐶 
(capacity: 1,500) 

First-Fit  134 

Genetic 133 

 

4.4. Summary of Results 
      

     In each test group, the genetic algorithm produced 

a better solution than the first-fit algorithm for two-

thirds of the problem instances in the group. For these 

instances, solutions obtained by the genetic algorithm 

had a fitness that was one better than the fitness of the 

solution produced by the first-fit algorithm. This was 

the case for all instances in which the genetic 

algorithm produced better solutions. 

     For the remaining problem instances, the two 

algorithms produced solutions whose fitnesses were 

identical. There weren’t any cases in which the genetic 

algorithm produced a final solution that was worse 

than the solution produced by the first-fit algorithm for 

the same problem instance. 

 

5. Conclusion 
 

     From the results collected from the test problem 

instances described in 4. Comparison of Algorithms, 

shown in Table 1, Table 2, and Table 3, it is clear that 

of the two algorithms, the genetic algorithm managed 



 

 

to produce superior solutions to those of the first-fit 

algorithm for two-thirds of the problem instances. 

     In cases in which the solutions produced by the 

genetic algorithm were better than the solutions 

produced by the first-fit algorithm, the improvement in 

fitness was minimal. That being said, there was in fact 

improvement. The degree of improvement did not 

change with the size of the input set and the bin 

capacity. Regardless of the input parameters, the 

genetic algorithm always produced a final solution 

with a fitness equal to, or one better than the result of 

the first-fit algorithm. 

     It should be noted that the results of the genetic 

algorithm are probabilistic, in that each successive 

execution of the genetic program may produce a 

different overall best solution. This is dependent on the 

random initial population, the population size, the 

randomly selected parents, random mutation, and 

more. Therefore, there is a chance that the genetic 

program will not produce the optimal solution for a 

given input set in a single execution of the program. 

To increase the chances of producing a superior final 

solution, subsequent executions of the program should 

be performed, as demonstrated in this paper. 

     Though not mentioned in the testing and results, the 

genetic algorithm’s superior solutions were contrasted 

by its inferior execution time. This can be attributed to 

the large amount of work required in the genetic 

algorithm. Much work is required to complete merely 

one generation, and all of this work must be repeated 

for each generation. Furthermore, the entire process 

must be repeated for each subsequent execution of the 

program. 

     In conclusion, this genetic algorithm can be used to 

generate improved BPP solutions to those produced by 

the first-fit algorithm alone.
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