

A Genetic Algorithm for the Bin Packing Problem

Jordan Junkermeier

Department of Computer Science, St. Cloud State University, St. Cloud, MN 56301 USA

Abstract

 The bin packing problem (BPP) is an NP-hard

problem of combinatorial optimization. Given a set of

numbers and a set of bins of fixed capacity, the

problem is to find the minimum number of bins needed

to contain all of the numbers (Korf, 2002).

 In this paper, a genetic algorithm is proposed,

which generates random permutations of the input set

and then itself uses the first-fit algorithm, an

approximate algorithm to the BPP, to generate valid

solutions. The goal of the genetic algorithm is to

produce optimal permutations of the input set on

which the first-fit algorithm will be applied.

 The comparative results of the two algorithms on

three groups of test problem instances are compared

and evaluated, and the genetic algorithm is found to

produce better solutions than those of the first-fit

algorithm alone for two-thirds of the problem

instances. For the other problem instances, the two

algorithms produced solutions with equivalent

fitnesses.

1. Introduction

 The first-fit approximate algorithm has been

implemented as an alternative to computationally

difficult exact algorithms to produce adequate

solutions to the bin packing problem (BPP).

 In this paper, a genetic algorithm is proposed,

which generates random permutations of the input set

and then itself uses the first-fit algorithm to generate

valid solutions to the BPP. What matters here is the

order of the elements in the input set. Therefore, the

goal of the genetic algorithm is to produce optimal

permutations of the input set on which the first-fit

algorithm will be applied.

 The comparative results of the two algorithms on

three groups of test problem instances are compared

and evaluated at the end of the paper.

2. The Problem

2.1. Background

 The bin packing problem (BPP) is an NP-hard

problem of combinatorial optimization. Given a set of

numbers and a set of bins of fixed capacity, the

problem is to find the minimum number of bins needed

to contain all of the numbers (Korf, 2002).

 Formally, given 𝑛 items and 𝑛 bins, with 𝑤𝑗 =

𝑤𝑒𝑖𝑔ℎ𝑡 of item 𝑗 and 𝑐 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 of each bin, the

problem is to minimize 𝑧 = ∑ (𝑦𝑖)𝑛
𝑖=1 subject to

∑ (𝑤𝑗𝑥𝑖𝑗) ≤ 𝑐𝑦𝑖
𝑛
𝑗=1 : 𝑖 ∈ 𝑁 = {1, … , 𝑛} , ∑ (𝑥𝑖𝑗) =𝑛

𝑖=1

1 : 𝑗 ∈ 𝑁 , 𝑦𝑖 = 0 or 1 : 𝑖 ∈ 𝑁 , 𝑥𝑖𝑗 = 0 or 1 : 𝑖 ∈ 𝑁

and 𝑗 ∈ 𝑁 , where 𝑦𝑖 = 1 if bin 𝑖 is used, and 0

otherwise, and 𝑥𝑖𝑗 = 1 if item 𝑗 is assigned to bin 𝑖,

and 0 otherwise (U. of Bologna: ORG).

 The following examples demonstrate the bin

packing problem. Take the set of numbers

{1, 2, 3, 4, 5} and a bin capacity of 5. A solution for

this problem instance forms bins {2, 3} , {1, 4} , and

{5}, for a total of three bins, each at their capacity. In

another example, given the set {6, 12, 15, 40, 43, 82}

and a bin capacity of 100, a minimum of two bins,

{6, 12, 82} and {15, 40, 43} , can be formed (Korf,

2002).

 In bin packing problem instances, the minimum

number of bins in a solution must be at least ⌈
∑(𝑎𝑖∈𝐴)

𝐶
⌉,

where 𝐴 is the input set and 𝐶 is the bin capacity. If the

number of bins in a solution is equivalent to this

expression, then that solution is an optimal solution to

the problem instance (Korf, 2002). In both of the

above examples, the solutions presented are optimal

solutions for their respective problem instances.

2.2. Applications

 The bin packing problem can be applied to many

areas, both in computing and otherwise. In general, the

BPP is applicable to any situation in which identical

bins with the same capacity are to be filled with items

of a specified weight, such as packing trucks that have

a weight capacity 𝐶 (Malkevitch, 2004).

Specifically, bin packing is used in VLSI circuit

clustering, partitioning, and technology mapping,

where the area of a gate corresponds to the size of an

item and the area of the clusters corresponds to the

capacity of the bins (Izumi et al., 1998).

 In addition, bin packing is directly related to

machine scheduling problems, in which a set of

independent tasks and a set of identical machines on

which to run the tasks are given. Each task requires a

certain amount of time to complete on a machine. One

might wish to determine the minimum number of

machines needed to complete a collection of tasks with

times 𝑡1, 𝑡2, … , 𝑡𝑛 in time 𝑇 . This problem is, in

essence, a bin packing problem in which 𝑇 is the

capacity of the bins and each 𝑡𝑖 is the weight of an item

to be packed. (Malkevitch, 2004).

3. Algorithms

 This section briefly describes a few exact

algorithms for the bin packing problem, and then

examines the first-fit approximate algorithm, which is

the algorithm used in comparison to the proposed

genetic algorithm. Finally, the genetic algorithm for

which this paper was written is itself presented and

described.

3.1. Exact Algorithms

 Very little can be found in the literature on the exact

solution of the BPP (Schwerin & Wäscher, 1997; U.

of Bologna: ORG). Eilon and Christofides (1971)

presented a depth-first enumerative algorithm and

Hung and Brown (1978) presented a branch-and-

bound algorithm, yet both teams indicated that their

respective algorithms can only solve small-size

problem instances (U. of Bologna: ORG).

 Another exact algorithm, MTP, proposed by

Martello and Toth (1989) is based on a “first-fit

decreasing” branching strategy (U. of Bologna: ORG),

and is the best existing algorithm for optimal packing

(Korf, 2002). However, since the goal of this paper is

to present and compare approximate heuristic

approaches to the bin packing problem, this algorithm

will not be discussed further.

3.2. The First-Fit Approximate Algorithm

 Although many approximate algorithms for the bin

packing problem exist, only one, the first-fit (FF)

algorithm, will be described here. This algorithm is

later compared to the genetic algorithm presented in

this paper.

 The first-fit algorithm considers the items in the

input set in the order in which they appear in the set.

Each item is assigned to the lowest indexed initialized

bin into which it fits. If the current item cannot fit into

any initialized bin, a new bin is initialized, and the item

is placed into that bin (U. of Bologna: ORG). Figure

1 shows the first-fit algorithm applied to the set 𝐴 =
{4, 5, 6, 3, 9, 2} with a bin capacity of 13.

𝐴 = {4, 5, 6, 3, 9, 2}; 𝐶 = 13

 𝐵1 = {𝟒}

 𝐵1 = {4, 𝟓}

 𝐵1 = {4, 5} 𝐵2 = {𝟔}

 𝐵1 = {4, 5, 𝟑} 𝐵2 = {6}

 𝐵1 = {4, 5, 3} 𝐵2 = {6} 𝐵3 = {𝟗}

 𝐵1 = {4, 5, 3} 𝐵2 = {6, 𝟐} 𝐵3 = {9}

Figure 1. The first-fit algorithm applied to the set

𝑨 = {𝟒, 𝟓, 𝟔, 𝟑, 𝟗, 𝟐} with a bin capacity of 𝟏𝟑.

 The first-fit algorithm’s time complexity is

𝑂(𝑁 log 𝑁), which can be achieved by using a 2–3 tree

whose leaves store the current capacities of the

initialized bins. Therefore, each iteration of FF

requires 𝑂(log 𝑛) time, since the number of leaves in

the tree is bounded by 𝑛 . (U. of Bologna: ORG).

Furthermore, for all instances 𝐼 of the bin packing

problem, FF(𝐼) ≤
17

10
opt(𝐼) + 2 , where opt(𝐼)

denotes the optimal solution for instance 𝐼. Similarly,

there exist instances 𝐼 , with arbitrarily large opt(𝐼),

for which FF(𝐼) >
17

10
opt(𝐼) − 8 . (Johnson et al.,

1974).

 It should be noted that along with the first-fit

algorithm, the best-fit, next-fit-decreasing, first-fit-

decreasing, and best-fit-decreasing algorithms all

have equivalent worst-case time complexities of

𝑂(𝑁 log 𝑁) (Coffman et al., 1984).

3.3. The Genetic Algorithm

 In addition to greedy heuristics like the first-fit

algorithm, genetic algorithms (GA) can also be used to

produce adequate solutions to NP-hard problems.

Genetic algorithms are heuristics based on biological

evolution that simulate reproduction with variation

and selection according to fitness, like that of a true

biological population (Eiben & Smith, 2010).

 The genetic algorithm created to solve the BPP is

implemented in the C# programming language and

follows the general structure of a typical genetic

algorithm, shown in Figure 2 (Eiben & Smith, 2010).

In this GA, the program iterates through a set number

of generations and then halts, reporting the best overall

solution.

Generate random initial population;
While (not done)
{
 For i=1 to population size
 {
 Select two parents;
 Crossover to produce an offspring;
 Mutate the offspring;
 Insert offspring into new generation;
 }

 Offspring replace parents;
 Report the best solution in the population;
}

Report the best overall solution;

Figure 2. The general structure of a genetic

algorithm.

Time

3.3.1. Encoding Candidate Solutions

 In a GA designed for the bin packing problem, each

candidate solution can be represented by a permutation

of the elements in the input set.

 For each chromosome, the input set is randomly

shuffled, creating a random permutation. The question

now is how do these permutations apply to the BPP?

Since the first-fit approximate algorithm is the

algorithm being compared to, the first-fit algorithm

itself will be applied to each permutation. This way,

all candidate solutions will undoubtedly be valid.

 In short, the two algorithms that will be compared

are the first-fit algorithm itself and the genetic

algorithm, which operates on solutions generated from

the first-fit algorithm. Because the underlying

algorithm in both applications is identical, only the

order of the elements in the input set will differ.

 Therefore, the goal of the genetic algorithm is to

produce optimal permutations of the input set on

which the first-fit algorithm will be applied. The

permutations are generated by randomly shuffling the

elements in the input set. An example of the

underlying first-fit algorithm is shown in Figure 1.

 A Chromosome class with data members

permutation and fitness hold each candidate solution’s

permutation and its associated fitness, respectively.

Additionally, the first-fit algorithm is applied to each

chromosome during its creation, as to promptly

calculate its fitness so that it is available throughout

the remainder of the program’s execution. A

population array holds every Chromosome in the

population.

3.3.2. Fitness

 In this genetic algorithm, a chromosome’s fitness is

equal to the number of bins needed to hold the

elements in the input set, as defined by the bin packing

problem (see 2. The Problem). Therefore, fitness

should be minimized, such that chromosomes with

smaller fitnesses are better solutions.

 The fitness for each chromosome is also stored

within the Chromosome class. Fitnesses are

calculated when each chromosome is created, after the

underlying first-fit algorithm assigns the input

elements to bins. The resulting number of bins is the

chromosome’s fitness.

 At the end of each generation, once the offspring

chromosomes replace the parent chromosomes, the

chromosome with the smallest fitness is reported as

output to the program. This chromosome is also

compared to an overall best chromosome kept

throughout the program. If the best chromosome in the

current population has a smaller fitness than the

overall best, the local best chromosome becomes the

overall best. At the end of the program’s execution, the

overall best chromosome and its fitness are reported as

output.

3.3.3. Selection

 The genetic algorithm uses k-tournament selection

to determine which chromosomes in the population

will become parents, with 𝑘 = 2 for the problem

instances used during testing and during comparison

with the first-fit algorithm.

 To determine a parent, an array of size 𝑘 of

candidate parents is initialized, and chromosomes are

randomly chosen from the population and added to the

array until it is full. The candidates’ fitnesses are then

compared, and the chromosome with the smallest

fitness becomes the parent.

3.3.4. Crossover

 Crossover in the genetic algorithm is accomplished

via alternating-position crossover (Larrañaga et al.,

1996). In this crossover method, the first element in

the first parent chromosome is added to the offspring

chromosome. Then, ignoring duplicates, the first

element in the second parent chromosome is added to

the offspring chromosome. This continues for each

element in each parent, with all duplicates ignored.

This process is illustrated in Figure 3.

𝑝𝑎𝑟𝑒𝑛𝑡0 = {1 7 8 2 3 4 6 5}
𝑝𝑎𝑟𝑒𝑛𝑡1 = {2 7 1 5 6 3 4 8}

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = {1 2 7 7 8 1 2 5 3 6 4 3 6 4 5 8}

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 = {1 2 7 8 5 3 6 4}

Figure 3. An example of alternating-position

crossover in a genetic algorithm.

3.3.5. Mutation

 After an offspring chromosome has been created, a

random swap mutation is performed on that

chromosome’s permutation encoding. To perform this

mutation, two indices in the array holding the

permutation are randomly selected, and the contents of

the two indices are swapped. This way, each new

chromosome that enters the population still maintains

some heritability from its parents, while also allowing

for the introduction of new traits into the population.

3.3.6. Parameter Values

 Parameter values for the genetic algorithm were

chosen through trial-and-error, based on results from

small test instances. Figure 4 lists the genetic

algorithm’s parameters and the values of each.

 Population size: 100

 Number of generations: 100

 K-tournament 𝑘: 2

 Probability of crossover: 100%

 Probability of mutation: 10%

Figure 4. Chosen parameter values for

the genetic algorithm

4. Comparison of Algorithms

 In this section, several BPP problem instances are

described, and the results of both the genetic algorithm

and the first-fit algorithm on those instances are stated

and compared. For these tests, both of the algorithms

have been implemented in the C# programming

language and run as console applications.

 The algorithms were first tested on three problem

instances, each with an input set of 50 randomly

generated unique integers and varying bin capacities.

Similar groups of sets of size 100 and 500 were also

tested. For each instance, the genetic algorithm was

executed 50 times.

4.1. Test Group 1: Input sets of size 50

 As shown in Table 1 below, the genetic algorithm

outperformed the first-fit algorithm in two of the three

test problem instances. In both of these instances (sets

(50_𝐵 and 50_𝐶) , the genetic algorithm achieved

solutions whose fitnesses are one less than the

fitnesses produced by the first-fit algorithm. In the

other test instance (50_𝐴) , both algorithms’ best

solutions had equivalent fitnesses.

Table 1. Fitness Summary Statistics for Test

Group 1.

Input Set Algorithm Best Fitness

50_𝐴
(capacity: 200)

First-Fit 20

Genetic 20

50_𝐵
(capacity: 250)

First-Fit 18

Genetic 17

50_𝐶
(capacity: 350)

First-Fit 12

Genetic 11

4.2. Test Group 2: Input sets of size 100

 The algorithms produced similar results in the

second test group. The genetic algorithm’s solutions

for problems 100_𝐴 and 100_𝐵 were better than the

solutions produced by the first-fit algorithm, by a

single bin. The best solutions from the two algorithms

for problem 100_𝐶 had identical fitnesses. Table 2

shows these results.

Table 2. Fitness Summary Statistics for Test

Group 2.

Input Set Algorithm Best Fitness

100_𝐴
(capacity: 500)

First-Fit 29

Genetic 28

100_𝐵
(capacity: 500)

First-Fit 32

Genetic 31

100_𝐶
(capacity: 500)

First-Fit 34

Genetic 34

4.3. Test Group 3: Input sets of size 500

 Results for test group three matched the results

of the previous two test groups. The genetic algorithm

produced a better-by-one solution for two of the

problem instances (500_𝐵 and 500_𝐶) compared to

the first-fit algorithm. The two algorithms produced an

identical best fitness for problem instance 500_𝐴. The

results are shown in Table 3.

Table 3. Fitness Summary Statistics for Test

Group 3.

Input Set Algorithm Best Fitness

500_𝐴
(capacity: 1,500)

First-Fit 136

Genetic 136

500_𝐵
(capacity: 1,500)

First-Fit 134

Genetic 133

500_𝐶
(capacity: 1,500)

First-Fit 134

Genetic 133

4.4. Summary of Results

 In each test group, the genetic algorithm produced

a better solution than the first-fit algorithm for two-

thirds of the problem instances in the group. For these

instances, solutions obtained by the genetic algorithm

had a fitness that was one better than the fitness of the

solution produced by the first-fit algorithm. This was

the case for all instances in which the genetic

algorithm produced better solutions.

 For the remaining problem instances, the two

algorithms produced solutions whose fitnesses were

identical. There weren’t any cases in which the genetic

algorithm produced a final solution that was worse

than the solution produced by the first-fit algorithm for

the same problem instance.

5. Conclusion

 From the results collected from the test problem

instances described in 4. Comparison of Algorithms,

shown in Table 1, Table 2, and Table 3, it is clear that

of the two algorithms, the genetic algorithm managed

to produce superior solutions to those of the first-fit

algorithm for two-thirds of the problem instances.

 In cases in which the solutions produced by the

genetic algorithm were better than the solutions

produced by the first-fit algorithm, the improvement in

fitness was minimal. That being said, there was in fact

improvement. The degree of improvement did not

change with the size of the input set and the bin

capacity. Regardless of the input parameters, the

genetic algorithm always produced a final solution

with a fitness equal to, or one better than the result of

the first-fit algorithm.

 It should be noted that the results of the genetic

algorithm are probabilistic, in that each successive

execution of the genetic program may produce a

different overall best solution. This is dependent on the

random initial population, the population size, the

randomly selected parents, random mutation, and

more. Therefore, there is a chance that the genetic

program will not produce the optimal solution for a

given input set in a single execution of the program.

To increase the chances of producing a superior final

solution, subsequent executions of the program should

be performed, as demonstrated in this paper.

 Though not mentioned in the testing and results, the

genetic algorithm’s superior solutions were contrasted

by its inferior execution time. This can be attributed to

the large amount of work required in the genetic

algorithm. Much work is required to complete merely

one generation, and all of this work must be repeated

for each generation. Furthermore, the entire process

must be repeated for each subsequent execution of the

program.

 In conclusion, this genetic algorithm can be used to

generate improved BPP solutions to those produced by

the first-fit algorithm alone.

References

Bin-packing problem. University of Bologna. Department of Electronics, Computer Science, and Systems.

 Operations Research Group.

Coffman, E.G., M.R. Garey, & D.S. Johnson (1984). Approximation Algorithms for Bin-Packing – An Updated

Summary. In Algorithm Design for Computer System Design.

Eiben, A.E. & Smith, J.E. (2010). Introduction to Evolutionary Computing. Springer. Germany.

Eilon, S. & N. Christofides (1971). The Loading Problem. Management Sci. 17, 259-268.

Hung, M.S. & J.R. Brown (1978). An algorithm for a class of loading problems. Naval Research Logistics Quarterly

 25, 289-297.

Izumi, T., T. Yokomaru, A. Takashashia, & Y. Kajitani (1998). Computational Complexity Analysis of Set-Bin-

 Packing Problem. Special Section on Discrete Mathematics and Its Applications. Tokyo Tech Research

 Repository.

Johnson, D.S., A. Demers, J.D. Ullman, M.R. Garey, & R.L. Graham (1974). Worst-Case Performance Bounds for

 Simple One-Dimensional Packing Algorithms. SIAM. J. Comput. 3, 4.

Korf, Richard (2002). A New Algorithm for Optimal Bin Packing. AAAI-02 Proceedings. Los Angeles, CA.

Larrañaga, P., C.M.H. Kuijpers, M. Poza, & R.H. Murga (1996). Decomposing Bayesian Networks: Triangulation of

 the Moral Graph with Genetic Algorithms. Statistics and Computing.

Malkevitch, Joseph (2004). Bin Packing. American Mathematical Society. Feature Column Archive, May 2004.

Schwerin, P. & G. Wäscher (1997). The Bin-Packing Problem: A Problem Generator and Some Numerical

 Experiments with FFD Packing and MTP. Int. Trans. Op Res. 4, 377-389. Elsevier Science Ltd. Great Britain.

